Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
Digitizing Wellbore with Permanent Reservoir Monitoring and Flow Control: Is there a value?

Varma Gottumukkala
Schlumberger
Outline

• Well production challenges
• Digital well completion
• Technologies – Monitoring, Flow Control, Digital Solutions
• Case studies
• Conclusions
Well Production Challenges

Drilling a well to target depth does not guarantee maximum oil production. Challenges include

• early gas/water breakthrough
• poor drainage/sweep
• well integrity failures (leaks)
• lack of downhole data
• need for intervention
Digital Well Completion

Instrumenting a well with permanent monitoring and flow control valves to continuously measure pressure (P), temperature (T), flow rate (Q), fluid phases combined with digital solutions enables:

- production optimization
- reservoir management
- integrity monitoring
- well surveillance
- fewer interventions
Permanent Monitoring
What Is Permanent Monitoring?

Continuous acquisition of downhole P, T, and other data across reservoir zones—at a single or multiple depths—over the life of the well.
Downhole Gauges

Measurements: Pressure, Temperature

Deployment: Single point or multipoint, electric line

Applications

- Reservoir surveillance
- Permeability, skin, and drainage radius monitoring

Pressure Transient Analysis
Optical Fiber

Measurements: Distributed temperature and acoustics

Deployment: Clamped to tubing, casing, or pipeline

Distributed Temperature Sensing (DTS)

Distributed Acoustic Sensing (DAS)
Flow Control
Flow Control Valves (FCVs)

Downhole control of reservoir inflow across single or multiple zones, with various options for chokes (e.g., on-off, 10-position, infinitely variable)

Deployment

• production tubing
• control lines to adjust choke positions
• remote actuation
Types of FCVs

Hydraulic
• Valves actuated by multiple hydraulic control lines from surface

Electrohydraulic
• Valves actuated by one electric and two hydraulic control lines from surface

Fully electric
• Valves actuated by one electric line from surface
Digital Completion Deployment

Single Trip
- Single/Multizone in one go

Multi Trip
- Run In Hole lower completion
- Sting in with upper completion
- Hydraulic and Electric Wet Mate

In- Lateral
- Deploy smart completions inside lateral
Digital Solution – Flow Control Valves

Auto control

Optimal valve position

Skin; pressure depletion

Productivity index;
Reservoir pressure

Flow Rate Estimate;
Pannulus, Ptubing, Area

Reference: SPE 185513, 176648, 186223
Digital Solution – Fiber Optics

Raw Data
- Fiber optic data (DTS, hDVS)
 - Permanent installation
 - Coiled Tubing
 - Slickline

Data process & visualization
- Conditioning, editing and display

Compare & Optimize

Results
- Permeability & Skin
- Water Cut, GOR, Drainage Radius

Forward well model
- Borehole (survey, completion)
- Reservoir model
- Transient Data Input (P, Q, T)

Interpretation
- Fluid breakthroughs
- Leak Identification
- Flow Profiling (PLT Log)
Case Studies
Vertical Well—Two-Zone

- Well completion
 - Commingled production: 2 zones
 - FCVs, PT gauges, ESP
- Back allocation
 - Estimate Q: Delta P across FCVs
- Production surveillance
 - Real-time IPR: zone
 - Water cut using dual gauges
- Production management
 - FCV position optimization: 15% production improvement

Reference: SPE 185513
Multilateral Well

- Well completion
 - Trilateral well: 30,000-ft contact
 - Six electric FCVs, two per lateral, multitrip
- Permanent measurements
 - P, T, water cut, downhole flow rate
- Reservoir surveillance
 - Uneven sweep and drainage
- Production management
 - FCV optimization: enable production from tight zones

Reference: JPT, Sep 2016
Extended-Reach Well

• Well completion
 – Total well length: 40,000 ft
 – Six electric FCVs: five reservoir zones

• Permanent measurements
 – P, T, water cut, downhole flow rate

• Production management
 – High-flow zones choked back, drawdown increased in low-flow zones

• Reservoir characterization
 – Perform pressure buildup by zone: eliminate production deferment

Long Horizontal Well—Five Zones

Well Flowback Optimization

Average Zonal Rates

Time

1 2 3 4 5 6

Fully open valves
Zones 1 and 2 restricted
Optimized valve positions
Deepwater Injector Well

- **Well completion**
 - Deviated well: 20,000ft MD
 - Distributed temperature sensors
- **Permanent measurements**
 - Array of temperature sensors: 120
- **Reservoir surveillance**
 - Permanent injection profile
 - Well integrity
- **Production management**
 - Flowback optimization via surface choke adjustments

Source: SPE 192870
Digital Completions: Summary

- Identify and prevent early gas/water breakthrough
- Manage drawdown: Control flow from each reservoir zone
- Optimize production and sweep
- Establish production profile across the reservoir
- Minimize interventions
Horizontal Well - Fiber Optics

• Well details
 – Horizontal oil producer
 – 1,900-ft pay zone, sandstone
 – Fiber with tailpipe
 – DTS measurement

• Results
 – Temperature match: actual vs model
 – Oil and gas production profile
 – Identification of gas breakthrough
Unconventional Fracturing - Fiber Optics

- **Well details**
 - Plug and perforations, unconventional
 - Horizontal length 13,000 ft
 - Fiber behind casing
 - DAS measurement

- **Results**
 - Stage 10: cluster 2,3, not fractured – low energy
 - Stage 18: used diverter, all clusters fractured – high energy
Fiber Optics—VSP Monitoring

• Well details
 – Oil well
 – Depth 4,395 m
 – Fiber strapped to tubing
 – DAS measurement

• Results
 – Vertical seismic profiling (VSP) with arrivals
 – Layer identification and use for surface seismic depth correction

Source: SPE 161609

Distributed Acoustic Sensing: single sweep record at well head, derived VSP after 20 sweep stacking
Summary: DTS and DAS

Economics

<table>
<thead>
<tr>
<th>Well Type</th>
<th>Zones</th>
<th>Digital Completion Well Cost</th>
<th>Estimated Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Single</td>
<td>1.2X</td>
<td>-0.1X</td>
</tr>
<tr>
<td>Vertical</td>
<td>Multi</td>
<td>1.4X</td>
<td>0.1X</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Single</td>
<td>2.5X</td>
<td>0.3X</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Multi</td>
<td>2.5X</td>
<td>0.5X</td>
</tr>
<tr>
<td>Multilateral</td>
<td>Multi</td>
<td>3.2X</td>
<td>0.8X</td>
</tr>
<tr>
<td>Extended reach</td>
<td>Multi</td>
<td>4X</td>
<td>X</td>
</tr>
<tr>
<td>Deepwater</td>
<td>Single</td>
<td>22X</td>
<td>3X</td>
</tr>
</tbody>
</table>
Conclusions

• Real-time production management and improved reservoir recovery
• Fiber-optics provide permanent reservoir surveillance opportunities
• Downhole hardware should be combined with digital solutions to realize value
• Digital well completions enables reduced well count targeting multiple drains from single well minimizing over all field development costs
• Economic value improves for wells targeting more than one production interval
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation

Visit SPE.org/dl

#SPEDL