Science of kerogen: Engineering applications for shale E&P

Paul Craddock
Schlumberger-Doll Research, Cambridge, MA
June 2021

This presentation contains material on the topic of shale / unconventional resources that, at the time of recording, is subject to U.S. and E.U. trade sanctions. Attendees are required to follow applicable laws that govern their access to the material disclosed herein.
Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
Acknowledgments

You, SPE International, SPE Sections, Schlumberger, and experts around the world

Drew Pomerantz, Schlumberger-Doll
Kyle Bake, Schlumberger-Doll
Jeff Miles, Schlumberger-Doll
Nicholas Drenzek, Schlumberger-Doll (now Baker-Hughes)
Robert Kleinberg, Schlumberger-Doll (Emeritus)
Laurent Mosse, Schlumberger
Pablo Saldunganay, Schlumberger
Ravinath Kausik, Schlumberger-Doll
Stacy Lynn Reeder, Schlumberger-Doll
Bastian Sauerer, Schlumberger Dhahran
Wael Abdallah, Schlumberger Dhahran
Agnieszka Furmann, Schlumberger Reservoir Laboratories
Grzegorz Lis, Schlumberger Reservoir Laboratories

(Now Univ. Wroclaw)

Françoise Béhar, IFP
Justin Birdwell, U.S. Geological Survey
K. Adry Bissada, Univ. Houston
Trudy Bolin, Argonne Natl. Laboratory
Taras Bryndzia, Shell
Bjørn Buchardt, Univ. Copenhagen

Alan Burnham, American Oil Shale
Brian Cardott, Okla. Geological Survey
Gareth Chalmers, Univ. British Columbia
Stephen Cheshire, Saudi Aramco
Bernard Durand, IFP
Timothy Eglinton, Woods Hole Oceanographic Inst.
F. Kent Guidry, ResTech Houston

Paul Hackley, U.S. Geological Survey
Adam Haecker, Continental Resources
Daniel Jarvie, Humble Geochemical Services

Aaron Jubb, U.S. Geological Survey
Barry Katz, Chevron
Simon Kelemen, ExxonMobil
Michael Lewan, U.S. Geological Survey
Robert Loucks, Bureau Economic Geology
Donald Luffel, ResTech Houston
Maria Mastalerz, Univ. Indiana, Bloomington
Sudipa Mitra-Kirtley, Rose-Hulman Inst. Technology
Alberto Ortiz, YPF, S.A.
Quinn Passey, ExxonMobil
Bernard Tissot, IFP
Dirk Van Krevelen, TU Delft
Mireille Vandenbroucke, IFP
Dietrich Welte, KFA-Jülich
Kerogen: reservoir science to application

INTRODUCTION

What is kerogen?
Why is it important?

SCIENCE

Chemical insights → Petrophysical properties
Microstructural insights → Kerogen-pore interactions

APPLICATION

Reservoir characterization
Reservoir storage, transport, production
Kerogen: what is it?

Solid, black powder in sedimentary rocks (coal-like)
From degradation & burial of fossil plants/algae
Organic matter source of oil & gas
Kerogen: “type”

Freshwater Algae “type I”
Marine plankton “type II”
Coastal land plants “type III”
Kerogen: "thermal maturity"

Windows of petroleum generation/destruction

- Immature kerogen
- Oil window
- Wet-gas window
- Dry-gas window

Deep burial & thermal maturation

Less "cooking" → More "cooking"

Freshwater Algae “type I”
Marine plankton “type II”
Coastal land plants “type III”
Kerogen: “thermal maturity”

Windows of petroleum generation/destruction
- Immature kerogen
- Oil window
- Wet-gas window
- Dry-gas window

Maturity window

\[R_o, \% \]

- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.8
- 1
- 1.2
- 1.5
- 2
- 2.5
- 3
- 4
- 5

Kerogen: why is it important?

Oil & gas generation controlled by kerogen
Kerogen: why is it important?

Oil & gas storage & transport controlled by minerals

Oil & gas storage & transport controlled by kerogen?
Kerogen: how to study it?

→ Diversity → location, age, thermal maturity

![Map of Kerogen Locations]

PERIOD
- Cambrian
- Ordovician
- Silurian
- Devonian
- Miss.
- Pennsylv.
- Permian
- Triassic
- Jurassic
- Cretaceous
- Paleogene

AGE (Ma)
- 500
- 400
- 300
- 200
- 100
- 0
Kerogen: how to study it?

Shale core or cuttings

Crush to powder
Solvents to remove soluble organics
Non-oxidizing acids to remove inorganic minerals

Kerogen isolate

Analyze using novel and diverse techniques
Kerogen: reservoir science to application

INTRODUCTION
What is kerogen?
Why is it important?

SCIENCE
Chemical insights → Petrophysical properties
Microstructural insights → Kerogen-pore interactions

APPLICATION
Reservoir characterization
Reservoir storage, transport, production
Kerogen: chemical abundances

→ Large spread → As big as between oil and gas → Controlled by thermal maturation

![Graphs showing molar carbon fraction and hydrogen/carbon ratio vs. thermal maturity for different rock types.](image)

- $R^2 = 0.93$
- $R^2 = 0.90$

e.g., Buchardt & Lewan, 1990, AAPG; Lis et al., 2005, Org. Geochem; Kelemen et al., 2007, Energy Fuels; Cheshire et al., 2017, Int. J. Coal Geol; Craddock et al., 2019 Org. Geochem, French et al., 2020, MPG
Kerogen: chemical structures

→ Solid state spectroscopies → e.g., infrared, nuclear magnetic resonance, Raman, X-ray

IR excitation causes bond vibrations

IR in

IR out

IR absorption intensity

Wavenumber, cm⁻¹ (Energy)

Thermal maturity

→

\[R^2 = 0.89 \]

Thermal maturity →, \(R_o \) %

\[\text{‘graphite’/‘wax’ ratio} \]

\[0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \]

oil
wet-gas
dry-gas

App 1: Diffuse reflectance IR spectroscopy

Measurement of rock characteristics:
- Mineral type & concentrations
- Kerogen concentration
- Kerogen chemistry/properties
- Kerogen thermal maturity

e.g., Christy et al., 1991, Org. Geochem; Charsky & Herron, 2012; Herron et al., 2014, SPWLA; Craddock et al., 2017, Org. Geochem.; Craddock et al., 2018, Petrophysics
App 1: Diffuse reflectance IR spectroscopy

Measurement of rock characteristics:
- Mineral type & concentrations
- Kerogen concentration
- Kerogen chemistry/properties
- Kerogen thermal maturity

Real-time rock characterization:
- Horizontal well cuttings, any mud type
- Integrated with logging measurements

e.g., Christy et al., 1991, Org. Geochem; Charsky & Herron, 2012; Herron et al., 2014, SPWLA; Craddock et al., 2017, Org. Geochem.; Craddock et al., 2018, Petrophysics
Kerogen: petrophysical properties

→ Porosity → key reservoir property → density & neutron (hydrogen index) logs
→ Use large difference between rock and pore properties

Density g/cm^3

<table>
<thead>
<tr>
<th>minerals (rock)</th>
<th>pore fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Hydrogen Index

<table>
<thead>
<tr>
<th>minerals (rock)</th>
<th>pore fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Kerogen: petrophysical properties

→ Porosity → key reservoir property → density & neutron (hydrogen index) logs
→ Use large difference between rock and pore properties

Density

- Minerals (rock)
- Kerogen (rock)
- Pore fluids

Hydrogen Index

- Minerals (rock)
- Pore fluids

Thermal maturity \rightarrow, R_o %

$R^2 = 0.90$

Kerogen: petrophysical properties

→ Porosity → key reservoir property → density & neutron (hydrogen index) logs
→ Use large difference between rock and pore properties

Kerogen: petrophysical properties

→ Kerogen (matrix) properties determine shale evaluations
→ Kerogen properties are variable and rarely known

e.g., Craddock et al., 2020 Petrophysics
App 2: TMALI THERMAL MATURITY-ADJUSTED LOG INTERPRETATION

Input: Thermal maturity

TMALI property correlations (type II kerogen)

Output: Type II kerogen endpoints

- Grain Density
- Electron Density
- Log Density
- Photoelectric Factor
- Formation Volumetric Factor
- Carbon Mole Fraction
- Hydrogen Mole Fraction
- H/C Mole Fraction Ratio
- Carbon Weight Fraction
- Hydrogen Weight Fraction
- Conversion Factor (TOC-to-TOM)
- Hydrogen Index
- Thermal Neutron Porosity
- Epithermal Neutron Porosity
- Sigma
- Fast Neutron Cross Section

Craddock et al., 2020 Petrophysics
Gas-in-place: 152 bcf/section
<table>
<thead>
<tr>
<th>Gamma Ray</th>
<th>Resistivity</th>
<th>Neutron Density</th>
<th>Late-oil Kerogen volume</th>
<th>Gas volume</th>
<th>Dry-gas Kerogen volume</th>
<th>Gas volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>K + Th + U</td>
<td>0 gAPI</td>
<td>0.2 ohm.m</td>
<td>2000</td>
<td>0 %</td>
<td>100</td>
<td>0 %</td>
</tr>
<tr>
<td>K + Th + U</td>
<td>0 gAPI</td>
<td>0.2 ohm.m</td>
<td>2000</td>
<td>0 %</td>
<td>100</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Kerogen properties for late oil
- Kerogen volume: 217 bcf/section

Kerogen properties for dry gas
- Kerogen volume: decreases
- Gas volume: increases

Gas-in-place: 217 bcf/section

ΔGIP: 40%

Δ$: 100M
Kerogen: reservoir science to application

SCIENCE

Chemical insights

APPLICATION

Petrophysical log responses

Reservoir characterization
Kerogen: reservoir science to application

INTRODUCTION
What is kerogen?
Why is it important?

SCIENCE
Chemical insights → Petrophysical properties
Microstructural insights → Kerogen-pore interactions

APPLICATION
Reservoir characterization
Reservoir storage, transport, production
Kerogen: high-resolution imaging

Conventional sandstone
(Photomicrography)

Unconventional shale
(Scanning Electron Microscopy)

→ Porosity can be all in organics!
→ Physical differences at grain scale!
→ Other differences at grain scale?

Kerogen: ‘nano-IR’

→ Atomic force microscopy (AFM) + IR spectroscopy → ‘nano-IR’

Size of AFM tip much smaller than individual grains! Smallest size of IR ‘spot’ bigger than individual grains!

IR absorption → Thermal expansion

Measure AFM deflection

IR absorption intensity

Wavenumber, cm\(^{-1}\) (Energy)

Yang et al., 2017, Nature Commun.
Kerogen: ‘nano-IR’ chemical mapping

SEM image

Grain X

Grain Y

Grain Z

Nano-IR ‘chemistry’

Absorption intensity, a.u.

Wavenumber, cm\(^{-1}\)

IR-proxy for ‘waxy’/‘graphitic’ carbon

Thermal maturity \(\rightarrow, R_o\) %
Kerogen: ‘nano-IR’ chemical mapping

SEM image

Grain X

Grain Y

Grain Z

Nano-IR ‘chemistry’

Absorption intensity, a.u.

Wavenumber, cm\(^{-1}\)

IR-proxy for ‘waxy’/‘graphitic’ carbon

Thermal maturation

Thermal maturity →, R_0 %

Yang et al., 2017, Nature Commun.
Kerogen: ‘nano-IR’ mechanical mapping

→ Chemical & Mechanical properties → correlated at molecular scale

SEM image

Nano-IR ‘chemistry’

AFM ‘stiffness’

Grain X

Grain Y

Grain Z

Absorption intensity, a.u.

Increasing aromatic (graphitic) carbon

Wavenumber, cm\(^{-1}\)

Probablity

Oscillation frequency, kHz

more stiff

less stiff

Increasing mechanical stiffness

Yang et al., 2017, Nature Commun.
Kerogen: pore-structure quantification

→ Kerogen surface area → generated by thermal maturity → high → surface interactions

Valenza et al., 2013, Geology; Suleimenova et al., 2014, Fuel; Cheshire et al., 2017, Int. J. Coal Geol; Craddock et al., 2018, Energy Fuels
Kerogen: pore ‘swelling’

Kerogen, *before* liquids extraction

Kerogen, *after* liquids extraction

→ Kerogen acts like a ‘sponge’
→ Adsorbs hydrocarbon gases
→ Swells with hydrocarbon liquids
→ Swelling blocks pores
→ Inhibits production

Reeder et al., 2016, Petrophysics
App 3: RPI RESERVOIR PRODUCIBILITY INDEX

Conventional reservoirs

<table>
<thead>
<tr>
<th>Total Organic Carbon</th>
<th>Oil + Gas</th>
</tr>
</thead>
</table>

TOC ↑ ✔️

Unconventional tight-oil

<table>
<thead>
<tr>
<th>Total Organic Carbon</th>
<th>Oil + Bitumen + Kerogen</th>
</tr>
</thead>
</table>

TOC ↑ ?????

Oil (producible liquid)

Kerogen (swells)

Bitumen (non-producible liquid)

→ RPI ∝ Oil/TOC

→ RPI ↑ Production ↑

→ ‘Sweet spots’ in Tight Oil

Reeder et al., 2016, Petrophysics; Kausik et al., 2015, URTeC
App 3: RPI RESERVOIR PRODUCIBILITY INDEX

Eagle Ford, early-oil window

<table>
<thead>
<tr>
<th>TOC</th>
<th>Bound water</th>
<th>Free water</th>
<th>RPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>12</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Bitumen</td>
<td></td>
<td>Free oil</td>
<td>RPI > 0.1</td>
</tr>
</tbody>
</table>

Similar TOC
Bitumen \uparrow
RPI \downarrow
Production \downarrow

3,000 bbl/month

Eagle Ford, peak/late-oil window

<table>
<thead>
<tr>
<th>TOC</th>
<th>Bound water</th>
<th>Free water</th>
<th>RPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>12</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Bitumen</td>
<td></td>
<td>Free oil</td>
<td>RPI > 0.1</td>
</tr>
</tbody>
</table>

Similar TOC
Bitumen \downarrow
RPI \uparrow
Production \uparrow

18,000 bbl/month

Reeder et al., 2016, Petrophysics; Kausik et al., 2015, URTeC
Source-rock bitumen is common in oil window

(Important to know R_o)

Dissolve bitumen w/ solvent

Increase pore connectivity

Pump ‘green’ solvent downhole for initial stimulation or workover?

Valenza et al, 2013, Geology
Summary: SPE DL Tour of kerogen

Science to build knowledge of kerogen…

- Chemical/molecular properties
- Petrophysical properties
- Microstructure
- Diversity and heterogeneity
- Evolution during thermal maturation

Develop applications to improve…

- Surface reservoir evaluation
- Downhole reservoir evaluation
- ‘Sweet spot’ (target) identification
- Production strategies in shale
Selected readings

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation

Visit SPE.org/dl

#SPEDL